Disruption of Sphingolipid Biosynthesis Blocks Phagocytosis of Candida albicans
نویسندگان
چکیده
The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans.
منابع مشابه
Membrane sphingolipid-ergosterol interactions are important determinants of multidrug resistance in Candida albicans.
In this study, we examined the importance of membrane ergosterol and sphingolipids in the drug susceptibilities of Candida albicans. We used three independent methods to test the drug susceptibilities of erg mutant cells, which were defective in ergosterol biosynthesis. While spot and filter disk assays revealed that erg2 and erg16 mutant cells of C. albicans became hypersensitive to almost all...
متن کاملSphingolipids mediate differential echinocandin susceptibility in Candida albicans and Aspergillus nidulans.
The cell wall synthesis-inhibiting echinocandins, including caspofungin and micafungin, play important roles in the treatment of candidiasis and aspergillosis. Previous studies revealed that, in the haploid yeast Candida glabrata, sphingolipid biosynthesis pathway mutations confer caspofungin reduced susceptibility (CRS) but micafungin increased susceptibility (MIS). Here, we describe one Candi...
متن کاملFunctional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicans.
In the present study we describe the isolation and functional analysis of a sphingolipid biosynthetic gene, IPT1, of Candida albicans. The functional consequence of the disruption of both alleles of IPT1 was confirmed by mass analysis of its sphingolipid composition. The disruption of both alleles or a single allele of IPT1 did not lead to any change in growth phenotype or total sphingolipid, e...
متن کاملCandida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation.
C9-methylated glucosylceramide is a fungus-specific sphingolipid. This lipid is a major membrane component in the cell and is thought to play important roles in the growth and virulence of several fungal species. To investigate the importance of the methyl branch of the long-chain base in glucosylceramides in pathogenic fungi, we identified and characterized a sphingolipid C9-methyltransferase ...
متن کاملCandida albicans Targets a Lipid Raft/Dectin-1 Platform to Enter Human Monocytes and Induce Antigen Specific T Cell Responses
Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015